Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Sensor Fusion and Motion Control for Autonomous Racing Cars

Sensor Fusion and Motion Control for Autonomous Racing Cars

Learn how a research team from the Technical University of Munich uses Speedgoat real-time solutions, MATLAB® and Simulink® to develop and test an autonomous driving software stack, capable of operating a racing vehicle close to its physical limits. As an integral part of the framework, sensor fusion and motion control algorithms are optimized and validated for safe and accurate real-time operation, using Rapid Control Prototyping and Hardware-in-the-Loop simulation.

Rapid Control Prototyping

Hardware-in-the-Loop

Whitepapers

FPGA-based rapid control prototyping of permanent magnet synchronous motor servo drives

FPGA-based rapid control prototyping of permanent magnet synchronous motor servo drives

Due to tight time constraints and unknown disturbances, the position control problem in permanent magnet synchronous machine (PMSM) drives remains exceedingly challenging. Download this technical article to learn more about experimental validation of a cascade control structure for position control in PMSM drives.

Whitepapers

Speed Up Digital Control Development for Motors, Power Converters, and Battery Systems with Simulink

Speed Up Digital Control Development for Motors, Power Converters, and Battery Systems with Simulink

Digital control design for power electronics using Simulink® makes it easy to try new ideas, test them, and go to hardware without coding. You can use system-level models for desktop simulation, real-time simulation, and production code generation, speeding up designing and testing your power electronics control systems.

Whitepapers

10 Ways to Speed Design for Digitally Controlled Power Converters with Simulink

10 Ways to Speed Design for Digitally Controlled Power Converters with Simulink

This whitepaper highlights ways to accelerate digital control development for power converters with system-level simulation, how to validate control code on the processor without damaging electrical system hardware and developing real-time simulations of your electrical system.

Hardware-in-the-Loop

Rapid Control Prototyping

Whitepapers

Timing and Synchronization

Timing and Synchronization

Connect distributed systems with multiple nodes and create deterministic real-time applications with Speedgoat timing and synchronization solutions.

 

How To

Update Target Operating System to R2020b and Later

Update Target Operating System to R2020b and Later

Simulink Real-Time R2020b and later releases ship with a QNX-based 64-bit real-time operating system (RTOS). Learn how to update the software of your existing Speedgoat real-time target machine running on R2020a or earlier.

How To

Part 1: System Configuration of Host PC (R2020b and later)

Part 1: System Configuration of Host PC (R2020b and later)

Learn how to set up the host computer for smooth operation, test the host-target communication and troubleshoot basic installation issues.

How To

Part 2: Configuration of Target Machine (R2020b and later)

Part 2: Configuration of Target Machine (R2020b and later)

Understand the operating principles of real-time target machines, learn how to configure your target machine and create and transfer a Simulink Real-Time™ kernel.

How To

Part 3: Running Real-Time Applications (R2020b and later)

Part 3: Running Real-Time Applications (R2020b and later)

Understand the main principles of real-time simulation. Configure and prepare Simulink® models for real-time execution. Deploy Simulink® models as real-time applications onto Speedgoat target machines.

How To

Part 4: Data Logging (R2020b and later)

Part 4: Data Logging (R2020b and later)

Monitor, visualize, and log signals using the Simulation Data. Inspector (SDI) on the development computer. Write data to the disk of the target machine using “File Scope” blocks.

How To

Part 5: Control and Instrumentation (R2020b and later)

Part 5: Control and Instrumentation (R2020b and later)

Learn how to use a Simulink® model as a direct user interface to the real-time application. Tune parameters using MATLAB command lines to control the execution of the real-time application. Create custom user interfaces using MATLAB App Designer.

How To

Aalto University

Aalto University

Students' mission to get Finland's first satellite into orbit.

Customer Success Stories

Hardware-in-the-Loop

AGCO Fendt

AGCO Fendt

Automated testing of tractor controllers using Hardware-in-the-Loop test benches.

Customer Success Stories

Hardware-in-the-Loop

Cranfield University

Cranfield University

Novel technique improves speed and accuracy of micrometer scale precision CNC machine by 40%.

Customer Success Stories

Rapid Control Prototyping

IAV

IAV

Decreasing Plant Downtimes Through Test Automation of PLC Control Functions with a Digital Twin.

Customer Success Stories

Hardware-in-the-Loop

Lehigh University

Lehigh University

Achieving breakthroughs in the field of real-time hybrid simulation of tall buildings.

Customer Success Stories

Hardware-in-the-Loop

Schindler Elevator Corporation

Schindler Elevator Corporation

Validating Schindler’s next generation elevator controller family with hardware-in-the-loop simulation.

Customer Success Stories

Hardware-in-the-Loop

Scientific Aviation Association

Scientific Aviation Association

Find out how students at the Scientific Aviation Association are using a Baseline real-time target machine to accelerate their hybrid powertrain testing and certification process.

Customer Success Stories

Rapid Control Prototyping

Tongji University

Tongji University

Accelerating the development of a driver-adaptive ADAS control strategy using hardware-in-the-loop simulation.

Customer Success Stories

Hardware-in-the-Loop

TUM Hyperloop

TUM Hyperloop

Building Hyperloop pods to revolutionize terrestrial transportation.

Customer Success Stories

Hardware-in-the-Loop

University of Alabama

University of Alabama

Critical infrastructure monitoring and control using real-time hybrid simulation.

Customer Success Stories

Hardware-in-the-Loop

How to Configure a Speedgoat Test System for Simulink Real-Time

How to Configure a Speedgoat Test System for Simulink Real-Time

Configuring your Speedgoat machine for Simulink Real-Time: A Step-by-Step Guide

How To

Implementing a PLCnext-Based Turbine Control System in Simulink - Sokratel

Implementing a PLCnext-Based Turbine Control System in Simulink - Sokratel

Find out how Sokratel uses continuous integration (CI/CD) frameworks to continuously test their turbine control systems using Speedgoat test systems

Customer Success Stories

Verification of Avionics Systems Using Simulink Test and Simulink Real-Time - GE Aerospace

Verification of Avionics Systems Using Simulink Test and Simulink Real-Time - GE Aerospace

Find out how GE Aerospace uses an integrated requirements-based testing approach for controller certification using Speedgoat test systems

Customer Success Stories

Accelerating Safe Railway Application Development Using Model-Based Design - Alstom

Accelerating Safe Railway Application Development Using Model-Based Design - Alstom

Find out how Alstom employs requirements-based testing to develop safety-critical train controls using Speedgoat test systems

Customer Success Stories

Follow Speedgoat LinkedIn